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The general equations of three-dimensional rotational hypersonic flow are 

investigated. A solution of the Cauchy problem is given, in which is 

noted the existence of infinite regions of determination of the solution. 

Comparison is made between an approximate solution of the Cauchy problem 

and the results of exact analytical and numerical solutions. The results 

of the work are used to determine internal hypersonic flows. 

1. We consider the most general equations of three-dimensional rota- 

tional hypersonic flow. We take the equations, expressing steady iso- 

energetic flow of an ideal perfect gas, in the form 

div rotVxV= Tgrada (1.1) 

o=ln * 
11% 

p + const, 
v?z $i_LLT 

x--l p (1.2) 

Here x is the adiabatic index, V the velocity vector, VI the maximum 

speed, u the entropy function, p the pressure, and p the density. Ye will 

assume that the local Mach numberM >> 1; we write the velocity vector in 

the form 

V=V,(l--q)7 (O<rl-e~, %=I) (1.3) 

According to the Bernoulli equation 

M = n(l - q)[(x- l)q(2 - q)]-'/z (1.4) 

Substituting the expression (1.3) for the velocity V into (1.11, we 

obtain a systen of quasilinear equations for IJ, u and T, to which must be 

added the rebtion T = 1. The coefficients of this system consist of 
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Equations of hypersonic flow 415 

multiples of polynomials in q. In order to simplify the equations, we 

neglect in each polynomial all terms except the first, containing rl to 

the lowest power; in other words, we neglect quantities of.the order of 

rl"M 
-2 

in comparison with unity in the coefficients of the equation 

for each derivative, while making no assumption about the magnitude of 

the derivative itself; as a result we obtain 

1 
- %+ div7 = 0, 
X---i I?=1 

- ~~+gradq~grad,rl=~grada-- (1.5) 

Here grad,n indicates the component of the vector grad q perpen- 

dicular to the streamline, and a/& the derivative along the streamline. 

Equations (1.5) are particularly simply expressed in a system of co- 

ordinates whose,axes are directed respectively along the tangent to the 

streamline, the principal normal n, and the binormal nl: 

aa 0 as=, k+$ -T&=0, ,gL+o 
1 (1.6) 

where k is the curvature of the streamline. 

After the solution of (1.5) the pressure and density are determined 

by finding u from the simplified (for q <l) Bernoulli equation. As a 

result we have 

p=po(2T@, p = pc (2T&i, P = PO (a P = PO(G) (1.7) 

x -&=J$ 
x--i PO 

In view of (1.7). Equations (1.5) may be reduced to a system of equa- 

tions very close to the ordinary equations of hydrodynamics: 

dVnl 
dt + $- grad,p = 0, *+divV,,, = 0 

v,=v,v, 2 =v&, 
da 
x=0 

(W 

Equations (1.8) differ from the Euler equations in that the velocity 
vector has a constant modulus, and in the momentum equation there appears 
instead of the pressure gradient its component perpendicular to the 
streamline. 

Both forms of the equations - (1.5) and (1.8) - are equivalent. Below 
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the equations are used primarily in the form (1.5), which is very useful 
for analysis. 

2. In [II it is shown that for plane and axisymmetric flows the pro- 

perties of solutions of Equations (1.5) 

Y 
3- 

B 
are essentially determined by one para- 
meter K, which is equal to the product 

I 
I of a Bach number h! characteristic of a 

> 
.,’ 

given flow and the’quantity 6 character- 
izing the range of variation of the angle 
of inclination of the velocity vector. 

For flow past a slender body Equations 
(1.5) or (1.8) may be transformed into 
the equations of unsteady flow [2,3,41. 

D X 
Then K - 1 always (the characteristic 

Q Madi number Ma is taken at any point of 
the disturbed flow, for example, at the 

Fig. 1. leading edge of the body behind the 
shock wave), and the similarity parameter 

K = &,‘,e introduced in [2] (where the subscript 01 refers to the undis- 

turbed stream) may vary from 1 to 0~. A similarity rule may be formulated 
for hypersonic flow past slender affinely-related bodies, using instead 
of K, the parameter K and taking M, at corresponding points for the flows 
being considered. Therefore K may be called the local similarity parameter 
for hypersonic flow. 

For K << 1 a solution is obtained of the Cauchy problem, a knowledge 
of which, together with the solution of the mixed boundary problem, is 
necessary for the solution of internal flow. On the smooth arc AB (Fig. 1) 
the quantities 6, rl and cr are given as continuous and continuously differ- 
entiable functions of the arc length. For simplicity 6 is assumed to be 
a monotonic function/On AB, by assumption, are satisfied the conditions 

lo W--e(~)ISVmaxtl, x--4>O ($=tan-‘[(X - I) r1]“‘) (2.1) 

where max ‘1 is the maximum value of TJ on AB, 8 is the angle of inclina- 
tion of the velocity vector with the axis of abscissae. I( the acute angle 
between the direction of the velocity vector and the tangent to AB. and 
v the Mach angle. The first condition (2.1) is equivalent to the require- 
ment that K << 1 on AB. As is shown in Section 4, the second condition 
(2.1) is sufficient for the realization of the inequality K << 1 in the 
entire region of determination of the solution.* Here the streamlines 

l By the region of determination of the solution of a given curvilinear 
segment (section of surface in the three-dimensional case) is under- 
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are, with an error of order r2, straight rays, and the solution of the 

Cauchy problem for plane (v = 0) and axisymmetric (v = 1) flow takes 

along each ray the form [I] 

r. + a I I *(w--lb 

r-l-0 
d = 00 (2.2) 

where subscript 0 indicates Wanti- 

ties on AB, and r and o denote re- 
spectively the distances (Fig. 1) 
measured from point P of the tangent 
of the ray with the envelope of rays 

tY 

CD to the point S under considera- b- 
tion and to the point Q of inter- Y A 
section of the ray with the axis of 

D 

symmetry in axisymmetric flow. El C 

In view of the monotonic character 

of the variation of 0. the envelope d e 
CD lies on one side of AB. The direc- 
tion of the velocity vector is as- Fig. 2. 

signed at each point of AB. If the 
region where the flow arises lies to the left of AB, then r > 0 when CD 

lies to the left (Figs. 20, b, c), and correspondingly r < 0 when CD is 

to the right of AB (Fig. 2d). Furthermore, o > 0 when the envelope lies 
above the axis of symmetry (CE in Fig. 2c) and o < 0 for the segment DE 

in Fig. 2~. We draw the following conclusions with regard to the solu- 

tion of (2.2). 

)iJ 5 J 
2 

0 

Fig. 30 Fig. 3b 

stood that region in which the solution of the Cauchy problem is 
completely determined by the assignment of Cauchy data on this seg- 
ment (section of surface). 
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(1) The solution of (2.2) with the adopted accuracy coincides with 
the asymptotic solution, obtained previously by V.N. Gusev and M.D. 

Ladyzhenskii, of the problem of isentropic plane or axisymmetric efflux 
of a gas jet from an orifice into vacuum, according to which the flow at 
a great distance from the center 0 of the orifice tends asymptotically 
along each ray issuing from the point 0 to the flow from a certain plane 
or axisymmetric source with, generally speaking, intensity varying from 
ray to ray. 

(2) In the case of Fig. 2d the value of rl changes non-monotonically 
along a ray, having the character shown in Fig. 3~. Such a case can be 
realized for hypersonic flow in a channel with a central body (Fig. 3b). 

(3) The solution of (2.2) is accurate at a sufficient distance from 

the envelope and the axis of symmetry, where q becomes infinite. This 
does not rule out, however, the case v?hen the axis of symmetry is one of 
the rays in the solution of (2.2). as shown in Fig. 2~. 

It is evident that in us,ing the solution of (2.2) along the axis of 
symmetry in axisymmetric flow, one must set a = 0 in the solution. 

(4) It is possible that simultaneously 6 << 1 and K >> 1. Then with a 
relative error of order 60 Equations (1.5) or (1.8) can be transformed 
to the equations of unsteady flow, after which further simplification 
can be carried out in view of K >> 1. The solution of (2.2) may thus also 
be built up from the theory of unsteady gas motion. 

3. We investigate three-dimensional flows. In the case of flow past a 

slender body (K - 1) Equations (1.8) can be easily transformed into the 
equations of unsteady flow. 

We consider the solution of the Cauchy problem. Let con5nuous and 

continuously differentiable functions T, q and a be given on a certain 

surface S. Ihe following assumptions are made, analogous to (2.1): 

(1) At least two of the three quantities 6, (i = 1, 2, 31, character- 

izing the variation of the angle of the vector T with the axes of a 

Cartesian coordinate system exceed q by an order of magnitude on S. 

(2) 'Ihe !lach cone issuing from each point of the surface S does not 

intersect that surface. 

With these assumptions it follows from the last of Equations (1.5) 

that &/as = 0, that is, the streamlines are straight lines. If the sur- 

face is constructed for which these rays are the normals then the value 

of div T is known to be twice the average curvature of this surface. In 

moving along a given ray, surfaces are intersected whose centers of 

curvature lie at the same points 0, and 0, for all the surfaces. !Jsnoting 
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the distance between these points by a, we obtain from the first of Equa- 

tions (1.5) the solution in the form (2.2), where r and r. denote the, 

distances from one of the centers of curvature to the point under con- 

sideration and the surface S respectively. lhe remarks 2-k in 5ection 2 

are extended to the general case. 

4. For plane and axisymmetric flow we consider the question of the un- 

bounded region of determination of the solution for K >> 1. It is known 

that the solution of the Cauchy problem for a given arc segment.lB, if 

it exists, is determined in a curvilinear triangle, one side of which is 

AB and the other two are characteristics of different families passing 
through the points A and B. 

Assuming for simplicity that the flow is isentropic and that the 

envelope is concentrated into a point as in Fig. 2e (this last in the 

case of axisymmetric flow) we obtain the equation of the characteristics 

in the hodograph plane of 0 (the angle of inclination of the velocity 

vector with the n-axis) and TJ 

where the plus and minus signs refer to characteristics of the first and 

second family respectively. 

Using (2.2), it is possible to obtain from Equation (e-.1) the charac- 

teristics in the physical plane. 

The equations of the characteristics passing through the points A and. 

B taite the form (Fig. 1) 

W-K WC 
(4.2) 

--%a(1 -tv) + I/x-1 = --f)eV + v), % (1 + v) + m = 61(1 + Y) 

These expressions are written proceeding from the fact that the 

characteristics AE andBF in the physical plane do not intersect as q-0. 

In fact, from the first of Equations (2.1) it follows that 

f43 - et = 8, - eb - &,,+,cfi+m>v? (4.3) 

and the characteristic triangle is unclosed.* In the hodograph plane this 

. The significance of the second of Equations (2.1) is now evident. 

With the breaking of their characteristics AE and BF come out beyond 

the boundary of the region in which the solution of (2.2) is con- 

structed. 
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finds its reflection in the 
intersecting, each the line 

Thus in the Cauchy problem there appears an 

fact that the characteristics and BF, not 
parabolic degeneracy q = (Fig. 

8 

b 
A 

E 

F 

8 

infinite region of determination of the solution. 
This significant property of the class of hyper- 
sonic flows under consideration is preserved, as 
it is not difficult to verify, in the general 

case of three-dimensional rotational hypersonic 
flow. 

5. We pass to a consideration of the velocity 
in the hodograph plane. (The first similar in- 
vestigation of hypersonic flow was carried out 

in [51, where a solution was constructed analo- 
gous to that used below.) Transition to the 
hodograph plane is feasible in the case of isen- 

‘I 

Fig. 4. 

tropic plane flow. In this case (cf. [sI, for example) the Legendre 
potential 0 satisfies the equation 

P _!Y+v~-ghO, 
l-P/c4 ava 

where c is the speed of sound. 

(5.1) 

The transformation to Cartesian coordinates X, y is accomplished 
according to the equations 

aa sin0 acD -- x=-cose~+ v a(.) , 
-a0 cos e a0 

Y =-sinewy--- 
v ae (5.2) 

Introducing into Equations (5.1) the variable ‘I (1.3) in place of V, 
we obtain after simplification% analogous to those carried out in Section 
1 

am aa aw 
(x-il)rl-&T+F-.aen --Et) (5.3) 

The equation obtained agrees with the equation [sI describing one- 
dimensional isentropic flow in the coordinates of enthalpy T) and speed 8. 

The transformation to the physical plane of x (the time) and y (the 
coordinate) is accomplished in the case of unsteady flow according to 
the equations, different from (5.2) 

ao, a0 m 
z=,?, v=e~--yjg- (5.4) 

For equivalence of the two flows under consideration - hypersonic 
flow and unsteady flow - it is necessary to neglect in the expressions 
(5.2) quantities of order q in comparison with unity. and also suppose 
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that 8 is small. so that sin 8 = 8 and co8 8 E 1. As a result Equations 

(5.2) are transformed into (5.4). 

we take advantage of the exact solution of Equation (5.3) known hl 
from the theory of unsteady flow. which can be constructed for (3 - K)/ 

(K- 1) = 2a where n is an integer., which embrace the case of practical 

interest of a monatomic gas (a = 1, K = 5/3) and a diatomic gas (I = 2, 

K = 7/5). This solution has the form 

where F1 and Fz are arbitrary functions determined by the boundary con- 

ditions. 

We will use the equations of transformation to the physical plane in 

the form (5.4). Essentially an exact solution is found of the equations 
of unsteady flow for K >> 1. (Cf. remark 4 in Section 2. ) 

In the hodograph plane the line AB (Fig. 4) is given by the equations 

q=A = const. fj>g> 0. On this line are given the physical coordinates 

2 = 0, y = Y (e), YOZYZO 

After a series of computations which are omitted, the solution af the 

Cauchy problem for a monatomic gas (K = 5/3) may be put in the form 

y=ex++ 1/ L1 
F [Y (a+) + y WI + + 

t- 

~+=e+mfi-nh z_=e -‘t/6(fi-Ja) 

The analogous expression for a diatomic gas (K = 'l/5) is 

3 it+ 
x=--8o)/m1%, s Y (x) (5 - x)‘dx + 

3 (1 + A I q) *+ 
8 vn,,s/, s Y(X)(e-xX)dx- ~_ 

I/K)A 
(5.7) - T [Y (z+) - y @-)I 

z+ Z+ 

y=.gz--.-L3 
s 

3+Alrl 

4om $1 z_ 
y (XI@-xx)‘dx + 4)/101 z_ s Y (x) dx + $ W (I+) + Y WI 
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02/A >> 1 is bounded at q=O 

by a segment of the parabolic line. On this line Equation (5.3) experiences 

a parabolic degeneracy, the character of which is in principle different 

from the parabolic degeneracy of the Tricomi equation at M = 1. Equation 

(5.3) belongs to the second basic canonical form of equation exhibiting 

parabolic degeneracy (to the first form of which the Tricomi equation 

be longs). 

In agreement with Section 4, in the physical plane the region of de- 

termination of the solution extends to infinity. The segment BF in the 

hodograph plane corresponds precisely to the limiting angle between the 

characteristics AE and BF at infinity (Fig. 1). 

We expand the functions appearing in the expressions (5.6) that de- 

pend on 8 f JS(JTJ - JA) in Taylor series in powers of ~6(~77 - JA). we 

make a similar expansion in Equations (5.7) in powers of Jlo(Jq - JA). 

These expansions evidently have sense everywhere in the region AEFB. As 

a result we obtain 

r=z,[l 3-f(% VI, Y = Y* 11 f g (rl* fvl (5.8) 

where the quantities with subscript * have the form 

z~=-$[(-$,” -I] for X=+ 

z*=%[($,“-I] for x=-$ 

5 I 
y~=f&+Y(0) for x=-+J- and -5- 

(5.9) 

(5.10) 

(5.11) 

and f and g are determined from Equations (5.6) and (5.7). Equations 

(5.3) and (5.10) agree with the first of Equations (2.2), because with 

the accuracy adopted (cos 6 = 1) one can write Y’(8) = I-~ and x = r - r,,, 

where r and r,, have the same meaning as in Equation (2.2). 

Equation (5.11) gives the stream lines as straight lines, in conform- 

ity with the second of Equations (2.2). The functions f and g appearing 

in Equations (5.8) characterize the accuracy with which the solution of 

the Cauchy problem obtained in Section 2 agrees with the exact solution 

determined by (5.6) and (5.7). 

We rewrite the first terms of the expansions of these functions as 

series in powers of K, denoting the corresponding letters by subscript 1; 

for convenience of writing we introduce the notation A = 4,/A. For 

K = 5/3 we have 
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3 Y”A 
f’=TY’. 

(1 -A)* (1 +3 A + As) 
i--na 

3 (Y*0A / Y) (i- A)* (I+ 3A + As) + 5(Y”AIY) As (A - i)* (2 + A) 
g1= 5 (Y’6 / Y) (1 -As) f 5As 

and for K = 7/5 

fr= 5 Y“‘A (i - A)s 16 (A’ + 1) + 16A (A’ + 1) + A81 -- 
42 y' l-Ah” 

5 Y’“6A (I- A)* [6 (A’ + 1) + 16A (A’ + 1) + Aal + 
ia=zy (Y’e / Y) (I- h6) + As 

+Y.A Aa((n--)‘[As+(4/3)Aa +(4/3)4+2/31 
Y I(Y’O / Y)[i - A*] + As 

423 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

The expressions (5.12) to (5.15) contain as factors the quantities 
Y” A/Y, Y”’ WY, Y”‘/AY’, which have the order A/@ W I?. 

Thus in confirmation of the results of Sections 2 and 4, with a rela- 

tive error of order r2, the solution (2.2) may be used everywhere in 

the region of determination AEFB of the solution. 

L?OJ 

0 B 

Fig. 5. Fig. 6. 

For a more detailed analysis of the accuracy, calculations of the 
quantities fl and gl as functions of TJ according to Equations (5.12) to 
(5.15) were introduced for values of A corresponding to M = 20. 6 = 10’ 
for K = 5/3 (Figs. 5 and 6) and also for 6.z 20° with K = 7/5 (Figs. 7 
and 8), which corresponds to K equation to 3.49 and 6.98 respectively. 
The function Y(6) was put in powers in the form Y = ye (8/ 6)“. The calcu- 
lations were carried out for values of n = l/2, 1, 3/2, 2 and 3. 

As r-l - 0 the quantity fl tends to its limiting value, equal according 
to (5.12) to 9(n - l)(n - 2)/10K2 for a monatomic gas, and according to 

(5.14) to 25(n - l)(n - 2)/14K2 for a diatonic gas. 

As follows from Figs. 5 and 7. the quantity fl varies monotonically 
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as q increases from zero to its limiting value. For n = 1 and n = 2 we 
have f z 0. 

Fig. 8. 

As q - the quantity gl (Figs. 6 and 8) tends to the same values as fl. 
In contrast with fl; gl may have a non-monotonic character. For n = 1, 
8’0. For n= 2 the function gI tends to zero as q - 0. 

Fig. 9. Fig. 10. 

From the solution deduced it is possible to draw the conclusion that 
acceptable accuracy in the approximate solution of the Cauchy problem 

IO 

5 

/ 
0 

5 IO 

Fig. 11. 

given above is obtained for K 2 3.5 in the 
case of a monatomic gas and K 27 in the 
case of a diatomic gas. 

We give further a comparison (Figs. 9 
to 11) of the solution obtained for the 
Cauchy problem with a numerical solution 
for the case of free efflux of gas from an 
orifice with a plane surface of transition. 

From Equations (2.2) and (1.4) (writing 
henceforth Y = [(K - l)qlB1’* in view of 
q << 1) and considering remark 3 in Section 
2, the solution for the Mach number M along 
the axis of the jet assumes the form 
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(5.16) 

Figures 9 to 11 show the variation of Yach number M with the distance 
X along the axis of the jet, where X = r/R and R is the radius or half 
height of the initial aperature through which the flow takes place. 

Figure 9 corresponds to plane flow with K = 1.4, the numerical solu- 

tion (shown by a solid line) being taken from [‘I] and circles indicating 
values calculated from Equation (5.16). Figure 10 (K = 1.4, with 

numerical data from 181 shown by circles, also In Fig. 11) and Fig. 11 

(u = 1.6667. with the numerical solution curried out by O..N. Katzkova at 

the Computing Center of the Academy of Sciences of the USSR) correspond 
to axisymmetric flow. The solid lines in Figs. 10 and 11 represent the 

relation (5.16). The constant values M,, and r,, in Equation (5.16) were 
determined for a certain X = X, coming from the numerical calculation. 

Adequate accuracy is attained already for MO ‘2 4. Indeed, the approximate 
solution of the Cauchy problem is well confirmed by the results of exact 
solutions and exact numerical calculations. 

6. On the effect of viscosity. ‘Ihe conclusion regarding the 

appearance of an infinite region of determination of the solution may be 

.-. .-..-, 

Fig. 120. Fig. 12b. 

used for an analysis of internal flow. We consider hypersonic flow in a 
nozzle as shown in Fig. 1W. In conformity with the construction of the 

* A nozzle is considered in which the course of the flow proceeds with- 
out a subsequent rectilinear flow. The construction of the contour of 
a hypersonic nozzle in which there exists a partial rectilinear flow 
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solution for sufficiently large values of the number hi on a certain line 
AB (such that on AB the conJition K >> 1 is satisfied) the flow in the 
nozzle is completely determined within an infinite region of determina- 
tion of the solution AEFB by giving the initial portion AB at the left. 
‘lhe difference between the limiting semi-angle 0.5(ee - Of) and the semi- 
angle of the nozzle on the line AB 0.5(Oa - Ob) is determined from Equa- 
tion (4.3), which may be rewritten, assuming that 0 = - 06 = 8 and Oe = 
- ef = 8’ and introducing the :bch number hfa at theapoint d, as 

lj-f3’= 2 1 

(x - 1) (I+ v) Ma 

For example, for an axisymmetric nozzle with Ma = 10 the difference 
between 0 and 0’ amounts to 14O for K = 1.4 and 8.5’ for K = 1.667. 

(6.9 

On the assumption that dissipative processes are absent, which was 
made everywhere up to now, the flow in the region AEFB remains the same 
if the contour of the nozzle to the right of AB is changed, as indicated 
in Fig. 12b, so that beyond the 1ineAB there exists flow into a vacuum. 

However in internal hypersonic flow, on account of the great rare- 
faction, the effects of viscosity and heat conduction, as a rule, are 
very significant. It can be asserted that these effects will manifest 
themselves substantially differently in the cases of the flow of Figs. 
12a and 12b. In the first case the boundary layer forming on the walls 
(dotted in Fig. 12a) may, for a sufficiently long nozzle, penetrate the 

region AEFB and consequently alter the flow. 

In the second case the processes of dissipation for flow into a vacuum 

are not connected with the appearance of a boundary layer. 

‘Ihrough the boundaries AC and BD of the jet in Fig. 12b there is no 
transfer of momentum and heat to the surrounding space, which is a vaccum, 
and therefore the total momentum and energy of the jet is preserved de- 
spite the presence of dissipative processes. ‘Ihere simply arises an irre- 
versible transformation of mechanical into thermal energy, analogous to 
that occurring in a shock wave. 

It may be expected that the effect of viscosity and heat conduction 
will much more strongly influence the flow of Fig. 12a than the ease of 

was carried out by A.A. Nikol’skii in a report at the All-Soviet 
Congress on Theoretical and Applied Mechanics from January 27 to 
February 3, 1960. 
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Fig. 12b’. Nevertheless, dissipative processes limit the application of 

the solution (2.2) of the equations for an ideal gas also in the second 
case. In order to delimit the region of applicability of the indicated 
solution, we assume that in the infinite region of determination AEFB 
of the solution there takes place hypersonic flow from a source (in the 
actual general case the flow is obviously close to the flow from a 
source), for which v&uation (2.2) is valid if we suppose that quantities 
with subscript 0 are constant in the whole region and a = 0. Expressing 
the parameters of the source in terms of the corresponding parameters at 
the critical section of the nozzle, denoted below by subscript *, we have 
for the radial component of velocity u and the other quantities in (1.7) 

p = p* (=$)“” (+)” ("+l) , p = p* (s) “’ (+)‘+” (6.2) 

where T is the temperature,_ the radius vector r is reckoned from the 
center of the critical section, and r* is the radius of the critical 
section. 

We wi 11 assume that the Prandtl number is constant, and furthermore 
assume a power-law dependence of the coefficient of viscosity p upon 
temperature in the form v = p,(T/T,)“. We substitute the expressions 
(6.2) into the Navier-Stokes equations and form the ratio of the largest 
viscous terms to the convective quantities 

Here R indicates the local Reynolds number, and E characterizes the 
required accuracy (in any case sgO.1). Equation (6.3) permits deter- 
mination of the distance, which we denote by r”, at which viscosity 
manifests itself, and of the corresponding value of the Mach number M 
(which we denote by M”). 

l It is understood that all that is said above is valid also in the case 
that outflow takes place (Fig. 12b) into a medium with a finite pres- 

sure p. It is only necessary that the pressure on the line AB be many 

times greater than p. Then the previous reasoning remains valid so 
long as the pressure in the jet does not become close to p. 
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Using Equations (6.21, we obtain 

(6.4) 

where IF* is the Reynolds number calculated for the characteristic para- 
meters in the critical sectia, determined by the expression 

R _ PI%‘. (v + 1) 
*- 

Is 

x+1-((X-1)n 
Oz= Z[(X-i)(i+Y)(i-nn)+v1 ’ p= 

1 

(~-f)(~+v)+--n)+v (6.5) 

r= 
2n(x-I)(1+V)-((X+1)V (x - 1) (I+ v) 
4 [(x - 1) (I+ v) (1 - n) + VI ’ d - 2 I(% - 1) (i + v) (1 -n) + v] 

(n is the power-law exponent in the expression for cl). 

As analysis of the expression (6.4) shows, viscosity may become 
significant for some r” C a~ if n < no, where no = 1 for plane flow and 
no = 1 + o.s(K - I)-’ for axisysvsetric flow. In plane flow even for n<n” 

the values of Mc are so large that 
practically the limitation (6.4) is 
immaterial. For example, with n = 
0.7, K = 1.4 ER = lo', we obtain for * 
hi0 a value h 3&l. In the case of - 
axisymnetric flow a regime of flow 0.75 
may be encountered where viscosity 
significantly limits the application 
of the solution (2.2). 0.5 

Z.8 lg.; 3ag 

a:4 i2:a is:4 

21.0 53.0 133.5 

‘;.; ff.f . 46.0 16.7 

We illustrate these resulting values of MO for two values of n. 

As follows from the table, as K and n decrease, which ordinarily ac- 
companies an increase in temperature, the effects of viscosity and heat 
conduction increase. For F > F’, when dissipative processes are signi- 
ficant, the flow is described by the Navier-Stokes equations, and the 
solution (2.2) is inapplicable. 

The author would like to thank A.A. Nikolskii for discussion of this 

work. 
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